These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phase behavior and glass transition of 1,2-dioleoylphosphatidylethanolamine (DOPE) dehydrated in the presence of sucrose. Author: Shalaev EY, Steponkus PL. Journal: Biochim Biophys Acta; 2001 Sep 03; 1514(1):100-16. PubMed ID: 11513808. Abstract: The effect of sucrose on the phase behavior of 1,2-dioleoylphosphatidylethanolamine (DOPE) as a function of hydration was studied using differential scanning calorimetry and X-ray diffraction. DOPE/sucrose/water dispersions were dehydrated at osmotic pressures (Pi) ranging from 2 to 300 MPa at 30 degrees C and 0 degrees C. The hexagonal II-to-lamellar gel (H(II)-->L(beta)) thermotropic phase transition was observed during cooling in mixtures dehydrated at Pi<or=35 MPa. After dehydration at Pi>or=57 MPa, the H(II)-->L(beta) thermotropic phase transition was precluded when sucrose entered the rigid glassy state while the lipid was in the H(II) phase. Sucrose also hindered the H(II)-to-lamellar crystalline (L(c)), and H(II)-to-inverted ribbon (P(delta)) lyotropic phase transitions, which occurred in pure DOPE. Although the L(c) phase was observed in dehydrated 2:1 (mole ratio) DOPE/sucrose mixtures, it did not form in mixtures with higher sucrose contents (1:1 and 1:2 mixtures). The impact of sucrose on formation of the ordered phases (i.e., the L(c), L(beta), and P(delta) phases) of DOPE was explained as a trapping of DOPE in a metastable H(II) phase due to increased viscosity of the sucrose matrix. In addition, a glass transition of DOPE in the H(II) phase was observed, which we believe is the first report of a glass transition in phospholipids.[Abstract] [Full Text] [Related] [New Search]