These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Site-directed mutations of human hemoglobin at residue 35beta: a residue at the intersection of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces.
    Author: Kavanaugh JS, Weydert JA, Rogers PH, Arnone A, Hui HL, Wierzba AM, Kwiatkowski LD, Paily P, Noble RW, Bruno S, Mozzarelli A.
    Journal: Protein Sci; 2001 Sep; 10(9):1847-55. PubMed ID: 11514675.
    Abstract:
    Because Tyr35beta is located at the convergence of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces in deoxyhemoglobin, it can be argued that mutations at this position may result in large changes in the functional properties of hemoglobin. However, only small mutation-induced changes in functional and structural properties are found for the recombinant hemoglobins betaY35F and betaY35A. Oxygen equilibrium-binding studies in solution, which measure the overall oxygen affinity (the p50) and the overall cooperativity (the Hill coefficient) of a hemoglobin solution, show that removing the phenolic hydroxyl group of Tyr35beta results in small decreases in oxygen affinity and cooperativity. In contrast, removing the entire phenolic ring results in a fourfold increase in oxygen affinity and no significant change in cooperativity. The kinetics of carbon monoxide (CO) combination in solution and the oxygen-binding properties of these variants in deoxy crystals, which measure the oxygen affinity and cooperativity of just the T quaternary structure, show that the ligand affinity of the T quaternary structure decreases in betaY35F and increases in betaY35A. The kinetics of CO rebinding following flash photolysis, which provides a measure of the dissociation of the liganded hemoglobin tetramer, indicates that the stability of the liganded hemoglobin tetramer is not altered in betaY35F or betaY35A. X-ray crystal structures of deoxy betaY35F and betaY35A are highly isomorphous with the structure of wild-type deoxyhemoglobin. The betaY35F mutation repositions the carboxyl group of Asp126alpha1 so that it may form a more favorable interaction with the guanidinium group of Arg141alpha2. The betaY35A mutation results in increased mobility of the Arg141alpha side chain, implying that the interactions between Asp126alpha1 and Arg141alpha2 are weakened. Therefore, the changes in the functional properties of these 35beta mutants appear to correlate with subtle structural differences at the C terminus of the alpha-subunit.
    [Abstract] [Full Text] [Related] [New Search]