These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of chemoresistance in HL-60 cells concomitantly causes a resistance to apoptosis and the synthesis of P-glycoprotein. Author: Campone M, Vavasseur F, Le Cabellec MT, Meflah K, Vallette FM, Oliver L. Journal: Leukemia; 2001 Sep; 15(9):1377-87. PubMed ID: 11516098. Abstract: The appearance of multidrug-resistant (MDR) proteins or the acquisition of a defective apoptotic programme are major drawbacks in the treatment of cancers since both induce a resistance to classical chemotherapy. However, a link between the two mechanisms has not, as yet, been clearly established. In this study, HL-60 cells cultured in the continual presence of a sub-lethal dose of doxorubicin (dox; HL-60/Dox) were used as a model to study acquired chemoresistance. During the induction of chemoresistance, the appearance of a functional P-glycoprotein (P-gp), in addition to the expression of anti-apoptotic Bcl-2, Bcl-XL and pro-apoptotic Bax proteins was assessed. Parental cells which are sensitive to dox, have no P-gp activity and express Bcl-2 and Bax. After 4 weeks of treatment, a functional P-gp was detected in HL-60/Dox cells. In addition, the synthesis of Bcl-2 appeared to be replaced by Bcl-XL while that of Bax remained unchanged. These cells were also resistant to apoptosis induced by both P-gp and non-P-gp substrates. This inability to induce apoptosis could have resulted from the induction of the expression of the inhibitor of apoptosis protein (XIAP). Our data show that acquired chemoresistance could involve a parallel induction of P-gp and an impairment of the apoptotic pathway.[Abstract] [Full Text] [Related] [New Search]