These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular characterization of StCDPK1, a calcium-dependent protein kinase from Solanum tuberosum that is induced at the onset of tuber development.
    Author: Raíces M, Chico JM, Téllez-Iñón MT, Ulloa RM.
    Journal: Plant Mol Biol; 2001 Jul; 46(5):591-601. PubMed ID: 11516152.
    Abstract:
    We isolated a full-length cDNA clone (StCDPK1) encoding a calcium-dependent protein kinase (CDPK) by screening a stolon tip cDNA library from potato plants (Solanum tuberosum L.). The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family except in the N-terminal region. As described for other CDPKs, StCDPK1 has a putative N-terminal myristoylation sequence. A coupled transcription/translation system was used to demonstrate that this post-translational modification occurs in vitro. The behaviour of the myristoylated form of StCDPK1 during its purification on a phenyl-Sepharose column mimics that of the endogenous potato enzyme suggesting that this modification occurs in vivo. In addition, a possible palmitoylation site is present in StCDPK1. Southern blot analysis suggests that more than one CDPK isoform is present in potato plants. Northern blot analysis of steady-state mRNA levels for StCDPK1 in different tissues of potato plants shows that the transcript is differentially expressed in tuberizing stolons. The transcript appears in the early steps of tuber formation before the induction of other genes, such as Pin2 and patatin. This result parallels previous data on CDPK activity in potato plants which was highest at the beginning of tuberization. Our results suggest that StCDPK1 is developmentally regulated. The early and transient expression of this CDPK isoform in the tuberization process suggests that this kinase could trigger a cascade of phosphorylation events involved in tuber induction.
    [Abstract] [Full Text] [Related] [New Search]