These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The expression of the sodium/iodide symporter is up-regulated in the thyroid of fetuses of iodine-deficient rats.
    Author: Schröder-van der Elst JP, van der Heide D, Kastelijn J, Rousset B, Obregón MJ.
    Journal: Endocrinology; 2001 Sep; 142(9):3736-41. PubMed ID: 11517148.
    Abstract:
    Is the fetal thyroid already capable to increase its iodide uptake in response to iodine deficiency? To answer this question, we analyzed the expression of the Na(+)/I(-) symporter and several other genes in the thyroid of rat fetuses at 21 d of gestation from control mothers presenting a mild or more severe iodine deficiency. Female rats were placed on a low iodine diet, not supplemented, or supplemented with iodide or perchlorate for 3 months. The maternal and fetal thyroidal iodide uptake was measured 24 h after injection of 10 microCi Na (125)I into the dams. The absolute iodide uptake of the maternal thyroid was unchanged in a low iodine diet, not supplemented, compared with one supplemented with iodide. In contrast, the fetal thyroid absolute iodide uptake of a low iodine diet, not supplemented, and one supplemented with perchlorate was decreased by 70% and 95% compared with that supplemented with iodide. Na(+)/I(-) symporter mRNA was detected in the fetal thyroid of supplemented with iodide and increased about 2- and 4- fold in the thyroid of fetuses from a low iodine diet, not supplemented, and one supplemented with perchlorate, respectively. Na(+)/I(-) symporter expression was induced in the fetal side of the placenta in both a low iodine diet, not supplemented, and one supplemented with perchlorate; in contrast, Na(+)/I(-) symporter mRNA was never detected in the maternal side of the placenta. Fetal thyroid thyroglobulin and type I deiodinase mRNA contents were only significantly increased with a diet supplemented with perchlorate. Glucose transporter 4 mRNA was decreased in the fetal thyroid of both a low iodine diet, not supplemented, and one supplemented with perchlorate compared with one supplemented with iodide. In conclusion, although the up-regulation of Na(+)/I(-) symporter expression in fetal thyroid and placenta in the low iodine diet, not supplemented group did not lead to restoration of a normal absolute iodide uptake, our data show that all adaptive and/or defending mechanisms against iodine deficiency are already present in the fetus.
    [Abstract] [Full Text] [Related] [New Search]