These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neutrophil-mediated epithelial injury during transmigration: role of elastase. Author: Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT, Downey GP. Journal: Am J Physiol Gastrointest Liver Physiol; 2001 Sep; 281(3):G705-17. PubMed ID: 11518683. Abstract: Neutrophil-mediated injury to gut epithelium may lead to disruption of the epithelial barrier function with consequent organ dysfunction, but the mechanisms of this are incompletely characterized. Because the epithelial apical junctional complex, comprised of tight and adherens junctions, is responsible in part for this barrier function, we investigated the effects of neutrophil transmigration on these structures. Using a colonic epithelial cell line, we observed that neutrophils migrating across cell monolayers formed clusters that were associated with focal epithelial cell loss and the creation of circular defects within the monolayer. The loss of epithelial cells was partly attributable to neutrophil-derived proteases, likely elastase, because it was prevented by elastase inhibitors. Spatially delimited disruption of epithelial junctional complexes with focal loss of E-cadherin, beta-catenin, and zonula occludens 1 was observed adjacent to clusters of transmigrating neutrophils. During neutrophil transmigration, fragments of E-cadherin were released into the apical supernatant, and inhibitors of neutrophil elastase prevented this proteolytic degradation. Addition of purified leukocyte elastase also resulted in release of E-cadherin fragments, but only after opening of tight junctions. Taken together, these data demonstrate that neutrophil-derived proteases can mediate spatially delimited disruption of epithelial apical junctions during transmigration. These processes may contribute to epithelial loss and disruption of epithelial barrier function in inflammatory diseases.[Abstract] [Full Text] [Related] [New Search]