These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling.
    Author: Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D.
    Journal: Mol Endocrinol; 2001 Sep; 15(9):1559-70. PubMed ID: 11518806.
    Abstract:
    Activation of the G-protein-coupled receptor for glucose-dependent insulinotropic polypeptide facilitates insulin-release from pancreatic beta-cells. In the present study, we examined whether glucose-dependent insulinotropic polypeptide also acts as a growth factor for the beta-cell line INS-1. Here, we show that glucose-dependent insulinotropic polypeptide induced cellular proliferation synergistically with glucose between 2.5 mM and 15 mM by pleiotropic activation of signaling pathways. Glucose-dependent insulinotropic polypeptide stimulated the signaling modules of PKA/cAMP regulatory element binder, MAPK, and PI3K/protein kinase B in a glucose- and dose-dependent manner. Janus kinase 2 and signal transducer and activators of transcription 5/6 pathways were not stimulated by glucose-dependent insulinotropic polypeptide. Activation of PI3K by glucose-dependent insulinotropic polypeptide and glucose was associated with insulin receptor substrate isoforms insulin receptor substrate-2 and growth factor bound-2 associated binder-1 and PI3K isoforms p85alpha, p110alpha, p110beta, and p110gamma. Downstream of PI3K, glucose-dependent insulinotropic polypeptide-stimulated protein kinase Balpha and protein kinase Bbeta isoforms and phosphorylated glycogen synthase kinase-3, forkhead transcription factor FKHR, and p70S6K. These data indicate that glucose-dependent insulinotropic polypeptide functions synergistically with glucose as a pleiotropic growth factor for insulin-producing beta-cells, which may play a role for metabolic adaptations of insulin-producing cells during type II diabetes.
    [Abstract] [Full Text] [Related] [New Search]