These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts. Author: Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Journal: Exp Cell Res; 2001 Sep 10; 269(1):23-34. PubMed ID: 11525636. Abstract: The nuclear functions in erythrocytes are almost completely extinct. There is no RNA polymerase I transcription, although a remnant nucleolar structure is still present. The remnant nucleolus of Xenopus laevis erythrocytes maintains a morphologically organized structure, nearly exclusively fibrillar. In this inactive nucleolar remnant, we revealed the presence of a modified form of transcription factor UBF. Several proteins of the processing machinery such as fibrillarin, nucleolin and B23/NO38, snoRNAs U3 and U8, and partially processed preribosomal RNAs colocalized in these remnant structures. Attempts to reprogram these erythrocyte nuclei in Xenopus egg extract showed that import of several nucleolar proteins was induced while the nucleolar remnant was disorganized. UBF became abundant and showed a necklace-like distribution on the decondensed ribosomal genes. Fibrillarin, nucleolin, and snoRNAs U3 and U8, also largely imported from the extract, were associated in large prenuclear bodies scattered in the nucleoplasm. B23/NO38 was present in different small bodies formed only in the most decondensed nuclei. In these remodeled erythrocyte nuclei, there was no imported preribosomal RNA and the initial presence of a residual nucleolar structure containing several partners of ribosome biogenesis was not sufficient to promote reassembly of newly imported nucleolar machineries. These nuclei, which reproduce the early events of nucleogenesis are also transcriptionally silent and thus compare to the early embryonic nuclei of Xenopus laevis.[Abstract] [Full Text] [Related] [New Search]