These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An essential role of a TatC homologue of a Delta pH- dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana.
    Author: Motohashi R, Nagata N, Ito T, Takahashi S, Hobo T, Yoshida S, Shinozaki K.
    Journal: Proc Natl Acad Sci U S A; 2001 Aug 28; 98(18):10499-504. PubMed ID: 11526245.
    Abstract:
    At least three transport systems function in targeting nuclear-encoded chloroplast proteins to the chloroplast thylakoid membrane. One of these systems requires a thylakoid pH gradient and is named the DeltapH-dependent protein transport system. A similar DeltapH export system of Escherichia coli contains four components, twin arginine translocation A (TatA), TatB, TatC, and TatE. TatC is a major component of the DeltapH-dependent protein transporter in E. coli and functions in the translocation of tightly folded proteins across membranes. We have isolated four transposon-inserted albino mutants named albino and pale green 2 (apg2) from Arabidopsis thaliana and showed that the transposons were inserted into different sites of a single gene. The APG2 gene product (named cpTatC) has sequence similarity with bacterial TatC and contains six putative transmembrane domains, including bacterial TatC proteins and a transit peptide in its N terminus. apg2 mutants showed albino phenotypes and could not grow in soil. The apg2 plastids were highly vacuolated, lacked internal membrane structures and lamellae of the thylakoid membrane, and contained many densely stained globule structures, like undifferentiated proplastids. Immunoblot analysis detected no thylakoid membrane proteins such as D1, light-harvesting complex, and OE23 in apg2 plastids, whereas soluble proteins such as rubisco large and small subunits were not decreased. These results indicate an essential role of cpTatC in chloroplast development, especially in thylakoid membrane formation.
    [Abstract] [Full Text] [Related] [New Search]