These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ion channels in cultured microglia. Author: Walz W, Bekar LK. Journal: Microsc Res Tech; 2001 Jul 01; 54(1):26-33. PubMed ID: 11526954. Abstract: Inward and, depending on activation state, outward potassium currents are the dominant ion channels in microglial cells in culture. During transition between resting and activated phases, there is also an upregulated expression of stretch/swelling-activated chloride currents. Pharmacological blockade of the specific potassium channels does not prevent the transition, whereas blockade of chloride channels does, suggesting that this current may be involved in phase changes. Interestingly, this chloride current is far less studied than the potassium currents with regard to the different microglial phases. One puzzling finding when studying microglial state is that despite changes in current densities and membrane oscillations during transition, there is no evidence of an accompanying change in membrane potential. In other cells of the immune system, membrane oscillations and alterations in membrane potential are correlated with transitions in cellular phases. This discrepancy in microglia may be a result of the fact that almost all ion channel and membrane potential studies in culture are undertaken with concomitant dialysis of cytoplasm with pipette solution. Further complicating matters is that the few studies that use microglia in situ, find fundamental differences in ion channel current patterns of "resting" microglia as well as different temporal changes to pathological events or stimuli.[Abstract] [Full Text] [Related] [New Search]