These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of 4-aminopyridine on motor evoked potentials in patients with spinal cord injury: a double-blinded, placebo-controlled crossover trial.
    Author: Wolfe DL, Hayes KC, Hsieh JT, Potter PJ.
    Journal: J Neurotrauma; 2001 Aug; 18(8):757-71. PubMed ID: 11526982.
    Abstract:
    4-Aminopyridine (4-AP) is a potassium (K+) channel blocking agent that has been shown to reduce the latency and increase the amplitude of motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) in patients with chronic spinal cord injury (SCI). These effects on MEPs are thought to reflect enhanced conduction in long tract axons brought about by overcoming conduction deficits due to focal demyelination and/or by enhancing neuroneuronal transmission at one or more sites of the neuraxis. The present study was designed to obtain further evidence of reduced central motor conduction time (CMCT) and to determine whether MEPs could be recorded from paretic muscles in which they were not normally elicited. MEPs were elicited with TMS being delivered to subjects (n = 25) pre- and post-administration of 4-AP (10 mg capsule) or placebo. The principal finding was that 4-AP lowered the stimulation threshold, increased the amplitude and reduced the latency of MEPs in all muscles tested, including those that were unimpaired, but did not alter measures of the peripheral nervous system (i.e., M-wave, H-reflex, F-wave). These 4-AP-induced changes in MEPs were significantly greater than those seen with placebo (p < 0.05). The primary implication of these results is that a low dose of 4-AP (immediate-release formulation) appears to improve the impaired central motor conduction of some patients with incomplete SCI. This is most likely attributable to overcoming conduction deficits at the site of injury but may also involve an increase in cortical excitability.
    [Abstract] [Full Text] [Related] [New Search]