These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The distribution of cartilage oligomeric matrix protein (COMP) in equine carpal articular cartilage and its variation with exercise and cartilage deterioration. Author: Murray RC, Smith RK, Henson FM, Goodship A. Journal: Vet J; 2001 Sep; 162(2):121-8. PubMed ID: 11531396. Abstract: Based on previous studies where tendons receiving the most load have been shown to have the highest levels of cartilage oligomeric matrix protein (COMP), we hypothesized that COMP distribution in articular cartilage may be influenced by mechanical loading. This investigation aimed (a) to describe the pattern of COMP immunoreactivity in middle carpal joint cartilage of two-year-old Thoroughbred horses; (b) to determine topographical variations; (c) to compare high (group 1) and low (group 2) intensity training and (d) to describe COMP immunoreactivity at sites with early osteoarthritis. Group 1 (n =6) underwent a 19 week high-intensity treadmill training programme and group 2 (n =6) were given daily walking until euthanasia. Dorsal and palmar sites on radial and third carpal articular surfaces were prepared. Immunohistochemistry was performed with polyclonal rabbit anti-equine COMP antiserum using a biotin-streptavidin/peroxidase method. Results showed: (a) intracellular immunoreactivity was present in all cartilage zones, but the distribution of COMP staining within the matrix varied between cartilage zones; (b) differences in distribution between sites were not observed, but total COMP levels in exercised horses (n =2) did vary between sites with dorsal sites containing less COMP than palmar sites on the radial, intermediate and third carpal lateral facet; (c) group 1 cartilage showed marked interterritorial distribution in the deep layer compared to group 2 where staining was more generalized throughout the matrix and (d) fibrillated cartilage showed increased local immunoreactivity in the matrix. These findings demonstrate zonal variations in equine COMP distribution which may be influenced by loading.[Abstract] [Full Text] [Related] [New Search]