These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells.
    Author: Defamie N, Mograbi B, Roger C, Cronier L, Malassine A, Brucker-Davis F, Fenichel P, Segretain D, Pointis G.
    Journal: Carcinogenesis; 2001 Sep; 22(9):1537-42. PubMed ID: 11532877.
    Abstract:
    Lindane (gamma-hexachlorocyclohexane) is a lipid-soluble pesticide that exerts carcinogenic and reprotoxic properties. The mechanisms by which lindane alters testicular function are unclear. Sertoli cells control germ cell proliferation and differentiation through cell-cell communication, including gap junction intercellular communication. Using the 42GPA9 Sertoli cell line, we show that lindane, at a non-cytotoxic dose (50 microM), abolished gap junction intercellular communication (GJIC) between adjacent cells. This change was associated with a time-related diminution and redistribution of Cx43 from the membrane to the cytoplasmic perinuclear region. A similar alteration was observed for ZO-1, a tight junction component associated with Cx43, but not for occludin, an integral tight junction protein. After a 24 h lindane exposure, Cx43 and ZO-1 colocalized within the cytoplasm and no modification of non-phosphorylated and phosphorylated isoforms of Cx43 was observed. By double immunofluorescent labelling we demonstrate that the cytoplasmic Cx43 signal was not present in either the endoplasmic reticulum/Golgi apparatus or lysosomes. These results suggest that lindane inhibits GJIC between Sertoli cells and that aberrant Cx43/ZO-1 localization may be responsible for this effect. The alterations in gap junctions induced by lindane in 42GPA9 Sertoli cells are similar to those observed in tumour cells and may be involved in the pathogenesis of neoplastic seminomal proliferation.
    [Abstract] [Full Text] [Related] [New Search]