These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Author: Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, Downing JR, Meyers S, Hiebert SW. Journal: Mol Cell Biol; 2001 Oct; 21(19):6470-83. PubMed ID: 11533236. Abstract: t(8;21) and t(16;21) create two fusion proteins, AML-1-ETO and AML-1-MTG16, respectively, which fuse the AML-1 DNA binding domain to putative transcriptional corepressors, ETO and MTG16. Here, we show that distinct domains of ETO contact the mSin3A and N-CoR corepressors and define two binding sites within ETO for each of these corepressors. In addition, of eight histone deacetylases (HDACs) tested, only the class I HDACs HDAC-1, HDAC-2, and HDAC-3 bind ETO. However, these HDACs bind ETO through different domains. We also show that the murine homologue of MTG16, ETO-2, is also a transcriptional corepressor that works through a similar but distinct mechanism. Like ETO, ETO-2 interacts with N-CoR, but ETO-2 fails to bind mSin3A. Furthermore, ETO-2 binds HDAC-1, HDAC-2, and HDAC-3 but also interacts with HDAC-6 and HDAC-8. In addition, we show that expression of AML-1-ETO causes disruption of the cell cycle in the G(1) phase. Disruption of the cell cycle required the ability of AML-1-ETO to repress transcription because a mutant of AML-1-ETO, Delta469, which removes the majority of the corepressor binding sites, had no phenotype. Moreover, treatment of AML-1-ETO-expressing cells with trichostatin A, an HDAC inhibitor, restored cell cycle control. Thus, AML-1-ETO makes distinct contacts with multiple HDACs and an HDAC inhibitor biologically inactivates this fusion protein.[Abstract] [Full Text] [Related] [New Search]