These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. Author: Lam T, Pearson KG. Journal: J Neurophysiol; 2001 Sep; 86(3):1321-32. PubMed ID: 11535680. Abstract: This study examined the influence of proprioceptive input from hip flexor muscles on the activity in hip flexors during the swing phase of walking in the decerebrate cat. One hindlimb was partially denervated to remove cutaneous input and afferent input from most other hindlimb muscles. Perturbations to hip movement were applied either by 1) manual resistance or assistance to swing or by 2) resistance to hip flexion using a device that blocked hip flexion but allowed leg extension. Electromyographic recordings were made from the iliopsoas (IP), sartorius, and medial gastrocnemius muscles. When the hip was manually assisted into flexion, there was a reduction in hip flexor burst activity. Conversely, when hip flexion was manually resisted or mechanically blocked during swing, the duration and amplitude of hip flexor activity was increased. We also found some specificity in the role of afferents from individual hip flexor muscles in the modulation of flexor burst activity. If the IP muscle was detached from its insertion, little change in the response to blocking flexion was observed. Specific activation of IP afferent fibers by stretching the muscle also did not greatly affect flexor activity. On the other hand, if conduction in the sartorius nerves was blocked, there was a diminished response to blocking hip flexion. The increase in duration of the flexor bursts still occurred, but this increase was consistently lower than that observed when the sartorius nerves were intact. From these results we propose that during swing, feedback from hip flexor muscle afferents, particularly those from the sartorius muscles, enhances flexor activity. In addition, if we delayed the onset of flexor activity in the contralateral hindlimb, blocking hip flexion often resulted in the prolongation of ipsilateral flexor activity for long periods of time, further revealing the reinforcing effects of flexor afferent feedback on flexor activity. This effect was not seen if conduction in the sartorius nerves was blocked. In conclusion, we have found that hip flexor activity during locomotion can be strongly modulated by modifying proprioceptive feedback from the hip flexor muscles.[Abstract] [Full Text] [Related] [New Search]