These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. Author: Adams JM, Hauser CJ, Livingston DH, Lavery RF, Fekete Z, Deitch EA. Journal: J Trauma; 2001 Sep; 51(3):452-6; discussion 456-7. PubMed ID: 11535890. Abstract: OBJECTIVES: The modulation of polymorphonuclear neutrophil (PMN) function by injury is unpredictable, and can predispose either to hyperimmune states (adult respiratory distress syndrome [ARDS], multiple organ failure) or to immune dysfunction, infection, and sepsis. Such outcomes have been related to excess production of the CXC chemokine interleukin (IL)-8, but PMN responses to IL-8 are mediated by both the relatively stable and IL-8 specific CXC receptor 1 (CXCR1) and the labile, promiscuous CXCR2. We hypothesized that progression to septic and multiple organ failure outcomes could be related to early differences in PMN CXC receptor status. METHODS: PMNs were isolated 12 +/- 3 hours after injury from 15 major trauma patients (Injury Severity Score of 34 +/- 2, 11 men and 4 women, age 36 +/- 4 years) who survived at least 7 days. Volunteer normal PMNs (n = 6 donors) were studied for comparison. Cells were stimulated either with the CXCR2 specific agent growth-related oncogene-alpha, or with IL-8, which stimulates CXCR1 and CXRR2. Receptor response was assessed as the mobilization of cell calcium. The development of ARDS, sepsis, and pneumonia was assessed according to standardized criteria. Day 1 receptor activity in the clinical groups was then compared by analysis of variance with Tukey's or t tests as appropriate. RESULTS: In patients that were otherwise comparable, CXCR2 responses were markedly diminished in the PMNs of patients who went on to sepsis and pneumonia, but were elevated in PMNs from the patients who went on to ARDS. CXCR1 responses were modestly lower in trauma patients than volunteers, but showed no significant variations among the various clinical outcome groups. CONCLUSION: The activity of PMN CXCR2 receptors soon after injury may be reflected in the later clinical sequelae of PMN activity. High CXCR2 activity may correlate with PMN hyperfunction and outcomes such as ARDS, whereas the loss of CXCR2 function in inflammatory environments may impair PMN functions in a manner that predisposes to pneumonia or sepsis. Early responses of PMN CXC receptors to injury may influence the clinical course of trauma patients.[Abstract] [Full Text] [Related] [New Search]