These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Martian regolith as space radiation shielding.
    Author: Simonsen LC, Nealy JE, Townsend LW, Wilson JW.
    Journal: J Spacecr Rockets; 1991; 28(1):7-8. PubMed ID: 11537624.
    Abstract:
    In current Mars scenario descriptions, an entire mission is estimated to take 500-1000 days round trip with a 100-600 day stay time on the surface. To maintain radiation dose levels below permissible limits, dose estimates must be determined for the entire mission length. With extended crew durations anticipated on Mars, the characterization of the radiation environment on the surface becomes a critical aspect of mission planning. The most harmful free-space radiation is due to high energy galactic cosmic rays (GCR) and solar flare protons. The carbon dioxide atmosphere of Mars has been estimated to provide a sufficient amount of shielding from these radiative fluxes to help maintain incurred doses below permissible limits. However, Mars exploration crews are likely to incur a substantial dose while in transit to Mars that will reduce the allowable dose that can be received while on the surface. Therefore, additional shielding may be necessary to maintain short-term dose levels below limits or to help maintain career dose levels as low as possible. By utilizing local resources, such as Martian regolith, shielding materials can be provided without excessive launch weight requirements from Earth. The scope of this synopsis and of Ref. 3 focuses on presenting our estimates of surface radiation doses received due to the transport and attenuation of galactic cosmic rays and February 1956 solar flare protons through the Martian atmosphere and through additional shielding provided by Martian regolith.
    [Abstract] [Full Text] [Related] [New Search]