These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CO2 crop growth enhancement and toxicity in wheat and rice.
    Author: Bugbee B, Spanarkel B, Johnson S, Monje O, Koerner G.
    Journal: Adv Space Res; 1994 Nov; 14(11):257-67. PubMed ID: 11540191.
    Abstract:
    The effects of elevated CO2 on plant growth are reviewed and the implications for crop yields in regenerative systems are discussed. There is considerable theoretical and experimental evidence indicating that the beneficial effects of CO2 are saturated at about 0.12% CO2 in air. However, CO2 can easily rise above 1% of the total gas in a closed system, and we have thus studied continuous exposure to CO2 levels as high as 2%. Elevating CO2 from 340 to 1200 micromoles mol-1 can increase the seed yield of wheat and rice by 30 to 40%; unfortunately, further CO2 elevation to 2500 micromoles mol-1 (0.25%) has consistently reduced yield by 25% compared to plants grown at 1200 micromoles mol-1; fortunately, there was only an additional 10% decrease in yield as the CO2 level was further elevated to 2% (20,000 micromoles mol-1). Yield increases in both rice and wheat were primarily the result of increased number of heads per m2, with minor effects on seed number per head and seed size. Yield increases were greatest in the highest photosynthetic photon flux. We used photosynthetic gas exchange to analyze CO2 effects on radiation interception, canopy quantum yield, and canopy carbon use efficiency. We were surprised to find that radiation interception during early growth was not improved by elevated CO2. As expected, CO2 increased quantum yield, but there was also a small increase in carbon use efficiency. Super-optimal CO2 levels did not reduce vegetative growth, but decreased seed set and thus yield. The reduced seed set is not visually apparent until final yield is measured. The physiological mechanism underlying CO2 toxicity is not yet known, but elevated CO2 levels (0.1 to 1% CO2) increase ethylene synthesis in some plants and ethylene is a potent inhibitor of seed set in wheat.
    [Abstract] [Full Text] [Related] [New Search]