These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of the threshold acceleration for the gravitropic stimulation of cress roots and hypocotyls. Author: Laurinavicius R, Svegzdiene D, Buchen B, Sievers A. Journal: Adv Space Res; 1998; 21(8-9):1203-7. PubMed ID: 11541373. Abstract: To determine the range of the threshold acceleration (a-threshold) for the gravitropic stimulation of Lepidium sativum L. roots and hypocotyls, experiments were performed on a centrifuge-clinostat with two-orthogonal axes. The rotation rate of the clinostat was 4 rpm (< or = 1.8 x 10(-4) g), while that of the centrifuge was from 3 to 17 rpm (3 x 10(-3) to 10(-1) g). The gravitropic response was determined: (i) after growth of roots and hypocotyls in their normal vertical position and subsequent gravitropic stimulation for 3 h by accelerations of 4 x 10(-3) to 10(-1) g, and (ii) after continuous stimulation in the lateral direction by centripetal accelerations of 4 x 10(-3) to 10(-1) g. The a-threshold was defined by an extrapolation of the regression line of R = p + rx, where x was either ln a or l/a for 3 h or a continuous stimulation, respectively. The a-threshold estimated after 3 h stimulation was equal to 2.6 x 10(-3) g for roots and 3.1 x 10(-3) g for hypocotyls. The threshold accelerations that were unable to evoke a gravitropic response even with continuous stimulation of cress roots and hypocotyls were approximately 3.1 x 10(-3) g and 3.6 x 10(-3) g, respectively. Increasing the stimulation acceleration up to 4.1 x 10(-3) g led to a statistically confirmed gravitropic response of a definite proportion of both the root and hypocotyl populations. In the experiments where acceleration and stimulation time were variable, the threshold dose (D-threshold) for roots was determined to be about 14 to 22 g x s, depending on the stimulation duration and the range of accelerations. The kinetics of gravitropic response at a near-threshold acceleration (4 x 10(-3) to 1.9 x 10(-2) g) differed from that at 1 g (horizontal stimulation). At low forces, the maximal response dependent on the magnitude of acceleration could not be enhanced by increasing the stimulation time up to at least 210 min.[Abstract] [Full Text] [Related] [New Search]