These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of exercise equipment on the microgravity environment.
    Author: Rogers MJ, Hrovat K, Moskowitz ME.
    Journal: Adv Space Res; 1999; 24(10):1283-7. PubMed ID: 11542665.
    Abstract:
    Numerous types of exercise equipment have flown on manned space flights to evaluate and maintain crew members' physical condition while on orbit. Vibrations associated with the use of some exercise equipment cause concern among microgravity scientists who are usually looking for a quiescent environment in which to run their experiments. We discuss the impact of aerobic (bicycle ergometer, treadmill) and non-aerobic (resistance devices) exercise on the microgravity environment of the Space Shuttle Orbiters and the Mir Space Station. In general, characteristic vibration disturbances due to ergometer exercise show the pedalling frequency at 2.5 to 3 Hz and the crew members' body rocking side-to-side at about half the pedalling frequency. For treadmill exercise, the footfall frequency on the treadmill platform can be clearly seen in the 1 to 2 Hz range, along with upper harmonics. The use of resistance exercise devices does not typically cause vibrations. Several vibration isolation systems used on the Orbiters and planned for the International Space Station are introduced. Finally, the responses of specific experiments to exercise vibrations are outlined.
    [Abstract] [Full Text] [Related] [New Search]