These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cortical microtubules form a dynamic mechanism that helps regulate the direction of plant growth.
    Author: Lloyd CW, Himmelspach R, Nick P, Wymer C.
    Journal: Gravit Space Biol Bull; 2000 Jun; 13(2):59-65. PubMed ID: 11543282.
    Abstract:
    Plants form an axis by controlling the direction of cell expansion; this depends on the way in which cellulose microfibrils in the wall resist stretching in particular directions. In turn, the alignment of cellulose microfibrils correlates strongly with the alignment of plasma membrane-associated microtubules, which therefore seem to act as templates for laying down the wall fibrils. Microtubules are now known to be quite dynamic, and to reorient themselves between transverse and longitudinal alignments. Plants "steer" the direction of growth by reorienting the cellulose/microtubule machinery. For example, the model predicts that a transverse reorientation on one flank of an organ and a longitudinal orientation on the other should lead to bending. This response has recently been observed in living, gravistimulated maize coleoptiles microinjected with fluorescent microtubule protein. This paper reviews the idea of the dynamic microtubule template and discusses possible mechanisms of reorientation. Recent biochemical work has shown that microtubules are decorated with different classes of associated proteins, whose potential roles are outlined.
    [Abstract] [Full Text] [Related] [New Search]