These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential involvement of caspases in hydroquinone-induced apoptosis in human leukemic hl-60 and jurkat cells.
    Author: Inayat-Hussain SH, Winski SL, Ross D.
    Journal: Toxicol Appl Pharmacol; 2001 Sep 01; 175(2):95-103. PubMed ID: 11543641.
    Abstract:
    The benzene metabolite hydroquinone (HQ) is postulated to exert its myelotoxicity by bioactivation to reactive quinone derivatives in myeloperoxidase (MPO)-containing cells. In this study, the role of caspases in hydroquinone-induced apoptosis in MPO-rich HL-60 promyelocytic leukemia and MPO-deficient Jurkat T-lymphoblastic leukemia cells was investigated. HQ-induced apoptosis in both cell types was accompanied by phosphatidylserine (PS) exposure, caspases-3/-7 activation, PARP cleavage, DNA fragmentation, and ultrastructural changes as assessed by electron microscopy. In HL-60 cells, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked activation of caspases-3/-7, cleavage of PARP, and DNA, but PS externalization and cytoplasmic changes were not significantly affected. In marked contrast, all features of apoptosis were completely inhibited by Z-VAD.FMK in HQ-treated Jurkat cells. These data provide evidence for Z-VAD.FMK-insensitive and caspases-3/-7-independent pathway(s) in the externalization of PS and cytoplasmic changes during HQ-induced apoptosis in HL-60 cells. In contrast, in Jurkat cells, all of these changes required caspase activation. The ability of HQ to induce equivalent apoptosis in both MPO-deficient Jurkat cells and MPO-rich HL-60 cells demonstrates that MPO-catalyzed bioactivation of HQ is not a prerequisite for toxicity. The differential mechanisms of apoptosis in HL-60 and Jurkat T cells may reflect the MPO activity of these cells and, as a result, the amount of reactive BQ and other metabolites that are generated.
    [Abstract] [Full Text] [Related] [New Search]