These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: VSV-G envelope glycoprotein forms complexes with plasmid DNA and MLV retrovirus-like particles in cell-free conditions and enhances DNA transfection. Author: Okimoto T, Friedmann T, Miyanohara A. Journal: Mol Ther; 2001 Sep; 4(3):232-8. PubMed ID: 11545614. Abstract: We have previously shown that vesicles containing the spike glycoprotein of the vesicular stomatitis virus (VSV-G) can associate efficiently with immature, non-infectious, envelope-deficient retrovirus-like particles assembled by packaging cells to produce infectious, pseudotyped viruses in cell-free conditions in vitro. We have also previously reported that VSV-G can enhance DNA lipofection efficiency by interacting with liposomes to form fusogenic, serum-stable liposomes with enhanced transfection properties. Here, we report that VSV-G can form a complex directly with naked plasmid DNA in the absence of a lipofection reagent and can thereby enhance the transfection efficiency of the naked plasmid vector. Sucrose gradient sedimentation analysis demonstrated that VSV-G can also associate with plasmid DNA and murine leukemia virus (MLV) gag-pol particles to form ternary complexes that co-sediment with high DNA transfecting activity. The increased transfection efficiency with VSV-G was dependent on the presence of the polycation (Polybrene) in the culture medium during transfection. Enhanced transfection was abolished by a neutralizing antibody to VSV-G. These results may be useful in the study of retrovirus assembly, in the further design of hybrid DNA-based retrovirus-like vectors, and in the full in vitro, cell-free assembly of infectious virus-like particles from component parts.[Abstract] [Full Text] [Related] [New Search]