These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extracellular ATP activates a P2 receptor in necturus erythrocytes during hypotonic swelling.
    Author: Light DB, Dahlstrom PK, Gronau RT, Baumann NL.
    Journal: J Membr Biol; 2001 Aug 01; 182(3):193-202. PubMed ID: 11547342.
    Abstract:
    We recently reported that ATP is released from Necturus erythrocytes via a conductive pathway during hypotonic swelling and that extracellular ATP potentiates regulatory volume decrease (RVD). This study was designed to determine whether extracellular ATP exerts its effect via a purinoceptor. This was accomplished using three different experimental approaches: 1) hemolysis studies to examine osmotic fragility, 2) a Coulter counter to assess RVD, and 3) the whole-cell patch-clamp technique to measure membrane currents. We found extracellular ATP and ATPgammaS, two P2 agonists, decreased osmotic fragility, enhanced cell volume recovery in response to hypotonic shock, and increased whole-cell currents. In addition, 2-methylthio-ATP potentiated RVD. In contrast, UTP, alpha,beta-methylene-ATP, and 2'-& 3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate and the P1 agonist adenosine had no effect regardless of experimental approach. Furthermore, the P2 antagonist suramin increased osmotic fragility, inhibited RVD, and reduced whole-cell conductance in swollen cells. Consistent with a previous study that indicated cell swelling activates a K+ conductance, suramin had no effect in the presence of gramicidin (a cationophore used to maintain a high K+ permeability). We also found the P2 antagonist pyridoxal-5-phosphate-6-azophenyl-2'4-disulfonic acid (PPADS) increased osmotic fragility; however, reactive blue 2 and the P1 antagonists caffeine and theophylline had no effect. Our results show that extracellular ATP activated a P2 receptor in Necturus erythrocytes during hypotonic swelling, which in turn potentiated RVD by stimulating K+ efflux. Pharmacological evidence suggested the presence of a P2X receptor subtype.
    [Abstract] [Full Text] [Related] [New Search]