These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Attenuation of oxidative DNA damage with a novel antioxidant EPC-K1 in rat brain neuronal cells after transient middle cerebral artery occlusion.
    Author: Zhang WR, Hayashi T, Sasaki C, Sato K, Nagano I, Manabe Y, Abe K.
    Journal: Neurol Res; 2001 Sep; 23(6):676-80. PubMed ID: 11547942.
    Abstract:
    EPC-K1, L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt, is a novel antioxidant. In this study, we investigated a reduction of oxidative neuronal cell damage with EPC-K1 by immunohistochemical analysis for 8-hydroxy-2'-deoxyguanosine (8-OHdG) in rat brain with 60 min transient middle cerebral artery occlusion, in association with terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) and staining for total and active caspase-3. Treatment with EPC-K1 (20 mg kg(-1) i.v.) significantly reduced infarct size (p < 0.05) at 24 h of reperfusion. There were no positive cells for 8-OHdG and TUNEL in sham-operated brain, but numerous cells became positive for 8-OHdG, TUNEL and caspase-3 in the brains with ischemia. The number was markedly reduced in the EPC-K1 treated group. These reductions were particularly evident in the border zone of the infarct area, but the degree of reduction was less in caspase-3 staining than in 8-OHdG and TUNEL stainings. These results indicate EPC-K1 attenuates oxidative neuronal cell damage and prevents neuronal cell death.
    [Abstract] [Full Text] [Related] [New Search]