These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of metal ions on Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase and stoichiometric incorporation of HCO3- into a cobalt(III)--enzyme complex. Author: Robison PD, Martin MN, Tabita FR. Journal: Biochemistry; 1979 Oct 16; 18(21):4453-8. PubMed ID: 115489. Abstract: Mg2+ or Mn2+ ions supported both the carboxylase and oxygenase activities of the Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase. For the carboxylase reaction, Mn2+ supported 25% of the maximum activity obtained with Mg2+; oxygenase activity, however, was twice as great with Mn2+ as compared to that with Mg2+. A further differential effect was obtained with Co2+. Co2+ did not support carboxylase activity and, in fact, was a strong inhibitor of Mg2+-dependent carboxylase activity, with a Ki of 10 microM. Co2+ did, however, support oxygenase activity, eliciting about 40% of the Mg2+-dependent oxygenase activity. No other divalent cations supported either activity. With high concentrations of Mg2+ or Mn2+, maximum carboxylase activity was seen after a 5-min activation period; activity decreased to about half of maximum after 30-min activation. A similar time dependence of activation was observed with Mn2+-dependent oxygenase activity but was not seen for Mg2+- or Co2+-dependent activity. Both carboxylase and oxygenase activities were inactivated by the oxidation of Co2+ to Co(III) with the resultant formation of a stable Co(III)--enzyme complex. In the presence of HCO3- (CO2), Co(III) modification was stoichiometric, with two cobalt atoms bound per enzyme dimer. Carbon dioxide was also incorporated into this Co(III)--enzyme complex, but only one molecule per enzyme dimer was bound, indicative of half-the-sites activity. These results thus indicate that there are substantial differences in the metal ion sites of the carboxylase and oxygenase activities of R, rubrum ribulosebisphosphate carboxylase/oxygenase.[Abstract] [Full Text] [Related] [New Search]