These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ameliorative effect of vasopressin-(4-9) through vasopressin V(1A) receptor on scopolamine-induced impairments of rat spatial memory in the eight-arm radial maze. Author: Mishima K, Tsukikawa H, Inada K, Fujii M, Iwasaki K, Matsumoto Y, Abe K, Egawa T, Fujiwara M. Journal: Eur J Pharmacol; 2001 Sep 07; 427(1):43-52. PubMed ID: 11553362. Abstract: In order to clarify the mechanism by which pGlu-Asn-Cys(Cys)-Pro-Arg-Gly-NH(2) (vasopressin-(4-9)), a major metabolite C-terminal fragment of [Arg(8)]-vasopressin (vasopressin-(1-9)), improves learning and memory, we used several different drugs such as an acetylcholine receptor antagonist, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor, vasopressin receptor antagonists and L-type Ca(2+) channel blocker to disrupt spatial memory in rats. Moreover, we examined the effect of vasopressin-(4-9) on acetylcholine release in the ventral hippocampus using microdialysis. Vasopressin-(4-9) (10 fg/brain, i.c.v.) improved the impairment of spatial memory in the eight-arm radial maze induced by scopolamine, pirenzepine and Ca(2+)/calmodulin -dependent protein kinase II inhibitor. Pirenzepine, a vasopressin V(1A) receptor antagonist, and L-type Ca(2+) channel blocker, but not a vasopressin V(2) receptor antagonist, suppressed the effects of vasopressin-(4-9) on scopolamine-induced impairment of spatial memory. Moreover, vasopressin-(4-9) did not affect acetylcholine release in the ventral hippocampus of intact rats or of scopolamine-treated rats as assessed by microdialysis. These results suggest that vasopressin-(4-9) activates vasopressin V(1A) receptors on the postsynaptic membrane of cholinergic neurons, and induces a transient influx of intracellular Ca(2+) through L-type Ca(2+) channels to interact with muscarinic M(1) receptors. The activation of these processes by vasopressin-(4-9) is critically involved in the positive effect of vasopressin-(4-9) on scopolamine-induced impairment of spatial memory.[Abstract] [Full Text] [Related] [New Search]