These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamate and GABA mediate suprachiasmatic nucleus inputs to spinal-projecting paraventricular neurons. Author: Cui LN, Coderre E, Renaud LP. Journal: Am J Physiol Regul Integr Comp Physiol; 2001 Oct; 281(4):R1283-9. PubMed ID: 11557637. Abstract: We used patch-clamp recordings in slice preparations from Sprague-Dawley rats to evaluate responses of 20 spinal-projecting neurons in the dorsal paraventricular nucleus (PVN) to electrical stimulation in suprachiasmatic nucleus (SCN). Neurons containing a retrograde label transported from the thoracic (T(1)-T(4)) intermediolateral column displayed three intrinsic properties that collectively allowed distinction from neighboring parvocellular or magnocellular cells: a low-input resistance, a hyperpolarization-activated time-dependent inward rectification, and a low-threshold calcium conductance. Twelve of fifteen cells tested responded to electrical stimulation in SCN. All of 10 cells tested in media containing 2,3,-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium (5 microM) and D(-)-2-amino-5-phosphonopentanoic acid (20 microM) responded with constant latency (11.4 +/- 0.7 ms) inhibitory postsynaptic potentials, able to follow 20- to 50-Hz stimulation and blockable with bicuculline (20 microM). By contrast, all eight cells tested in the presence of bicuculline demonstrated constant latency (9.8 +/- 0.6 ms) excitatory postsynaptic potentials that followed at 20-50 Hz and featured both non-N-methyl-D-aspartate (NMDA) and NMDA receptor-mediated components. We conclude that both GABAergic and glutamatergic neurons in SCN project directly to spinal-projecting neurons in the dorsal PVN.[Abstract] [Full Text] [Related] [New Search]