These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neural network prediction of 3(10)-helices in proteins. Author: Pal L, Basu G. Journal: Indian J Biochem Biophys; 2001; 38(1-2):107-14. PubMed ID: 11563321. Abstract: Secondary structure prediction from the primary sequence of a protein is fundamental to understanding its structure and folding properties. Although several prediction methodologies are in vogue, their performances are far from being completely satisfactory. Among these, non-linear neural networks have been shown to be relatively effective, especially for predicting beta-turns, where dominant interactions are local, arising from four sequence-contiguous residues. Most 3(10)-helices in proteins are also short, comprising of three sequence-contiguous residues and two capping residues. In order to understand the extent of local interactions in these 3(10)-helices, we have applied a neural network model with varying window size to predict 3(10)-helices in proteins. We found the prediction accuracy of 3(10)-helices (approximately 14%), as judged by the Matthew's Correlation Coefficient, to be less than that of beta-turns (approximately 20%). The optimal window size for the prediction of 3(10)-helices was about 9 residues. The significance and implications of these results in understanding the occurrence of 3(10)-helices and preferences of amino acid residues in 3(10)-helices are discussed.[Abstract] [Full Text] [Related] [New Search]