These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanistic, inhibitory and stereochemical studies on cytoplasmic and mitochondrial serine transhydorxymethylases.
    Author: Akhtar M, El-Obeid HA, Jordan PM.
    Journal: Biochem J; 1975 Feb; 145(2):159-68. PubMed ID: 1156355.
    Abstract:
    By using cytoplasmic and mitochondrial serine transhydroxymethylase isoenzymes from rabbit liver, it was shown that both enzymes exhibited similar ratios of serine transhydroxymethylase/threonine aldolase activities. Both enzymes catalysed the removal of the pro-S hydrogen atom of glycine, which was greatly enhanced by the presence of tetrahydrofolate. The cytoplasmic as well as the mitochondrial enzyme catalysed the synthesis of serine from glycine and [3H2]formaldehyde in the absence of tetrahydrofolate. The results are consistent with our previous suggestion that a role of tetrahydrofolate in the serine transhydroxymethylase reaction is to transport formaldehyde in and out of the active site (Jordan & Akhtar, 1970). The isoenzymes, however, showed remarkable differences in their inactivation by inhibitors. The serine transhydroxymethylase as well as the threonine aldolase activities of the cytoplasmic enzyme were inactivated in a similar fashion by chloroacetaldehyde, iodoacetamide, bromopyruvate and glycidaldehyde (2,3-epoxypropionaldehyde). These inhibitors had no effect on the two activities of the mitochondrial enzyme. The rate of inactivation of the cytoplasmic enzyme by glycidaldehyde was enhanced by the presence of glycine but decreased by the presence of serine. The implications of these results to the mechanism of catalysis and the nature of the active site of the enzymes are discussed.
    [Abstract] [Full Text] [Related] [New Search]