These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Author: Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S. Journal: Exp Cell Res; 2001 Oct 01; 269(2):230-6. PubMed ID: 11570815. Abstract: Adenosine, a purine nucleoside, acts as a regulatory molecule, by binding to specific G-protein-coupled A(1), A(2A), A(2B), and A(3) cell surface receptors. We have recently demonstrated that adenosine induces a differential effect on tumor and normal cells. While inhibiting in vitro tumor cell growth, it stimulates bone marrow cell proliferation. This dual activity was mediated through the A3 adenosine receptor. This study showed that a synthetic agonist to the A3 adenosine receptor, 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyl-uronamide (Cl-IB-MECA), at nanomolar concentrations, inhibited tumor cell growth through a cytostatic pathway, i.e., induced an increase number of cells in the G0/G1 phase of the cell cycle and decreased the telomeric signal. Interestingly, Cl-IB-MECA stimulates murine bone marrow cell proliferation through the induction of granulocyte-colony-stimulating factor. Oral administration of Cl-IB-MECA to melanoma-bearing mice suppressed the development of melanoma lung metastases (60.8 +/- 6.5% inhibition). In combination with cyclophosphamide, a synergistic anti-tumor effect was achieved (78.5 +/- 9.1% inhibition). Furthermore, Cl-IB-MECA prevented the cyclophosphamide-induced myelotoxic effects by increasing the number of white blood cells and the percentage of neutrophils, demonstrating its efficacy as a chemoprotective agent. We conclude that A3 adenosine receptor agonist, Cl-IB-MECA, exhibits systemic anticancer and chemoprotective effects.[Abstract] [Full Text] [Related] [New Search]