These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the upstream enhancer of the rat sodium/iodide symporter gene. Author: Chun JT, Di Lauro R. Journal: Exp Clin Endocrinol Diabetes; 2001; 109(1):23-6. PubMed ID: 11573134. Abstract: We previously demonstrated the presence of an enhancer that is located between nucleotides - 2264 and - 2495 in the 5' flanking region of the rat sodium/iodide symporter (NIS) gene (Ohno et al., 1999). When attached to NIS or heterologous promoters, this 232 bp fragment, which we call NUE, is able to stimulate transcription in a thyroid-specific and cAMP-dependent manner. A paired-domain transcription factor Pax8 binds to this enhancer and can stimulate the transcription in non-thyroid cells that do not normally support the NUE activities. Cotransfection of PKA, a downstream effector of cAMP, further potentiates the Pax8-mediated transactivation. However, this transcriptional machinery containing pax8 seems to require contributions from the neighboring cis-acting element that is similar to CRE/AP-1 consensus sequences. Modification of this putative CRE/AP-1 site not only represses the NUE transcriptional activities by 90% in FRTL-5 cells, but also nullifies the synergistic effect of PKA on pax8-mediated transactivation in HeLa cells. In this report, we have further characterized the putative CRE/AP-1 site within the NIS upstream enhancer using gel mobility shift assay. An oligonucleotide probe with NIS CRE/AP-1 sequence produced complex binding patterns in both FRTL-5 and HeLa cell, reflecting the presence of diverse classes of binding factors. When compared with CRE or AP-1 elements in other genes, the mobility shift pattern of NIS CRE/AP-1 was similar to those of collagenase TRE, c-Jun TRE, and somatostatin CRE, but the relative intensities of the binding complexes were quite different. This observation raises a possibility that the NIS CRE/AP-site is regulated by a novel mechanism.[Abstract] [Full Text] [Related] [New Search]