These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potentiation of Ca(2+) release by cADP-ribose in the heart is mediated by enhanced SR Ca(2+) uptake into the sarcoplasmic reticulum.
    Author: Lukyanenko V, Györke I, Wiesner TF, Györke S.
    Journal: Circ Res; 2001 Sep 28; 89(7):614-22. PubMed ID: 11577027.
    Abstract:
    cADP-Ribose (cADPR) is a novel endogenous messenger that is believed to mobilize Ca(2+) from ryanodine-sensitive Ca(2+) stores. Despite intense research, the precise mechanism of action of cADPR remains uncertain, and experimental findings are contradictory. To elucidate the mechanism of cADPR action, we performed confocal Ca(2+) imaging in saponin-permeabilized rat ventricular myocytes. Exposure of the cells to cADPR resulted in a slow (>2 minutes) and steady increase in the frequency of Ca(2+) sparks. These effects on local release events were accompanied by a significant increase in sarcoplasmic reticulum (SR) Ca(2+) content. In comparison, sensitization of ryanodine receptors (RyRs) by caffeine, a true RyR agonist, caused a rapid (<1 second) and transient potentiation of Ca(2+) sparks followed by a decrease in SR Ca(2+) content. When the increase in the SR load was prevented by partial inhibition of the SR Ca(2+) with thapsigargin, cADPR failed to produce any increase in sparking activity. cADPR had no significant impact on activity of single cardiac RyRs incorporated into lipid bilayers. However, it caused a significant increase in the rate of Ca(2+) uptake by cardiac SR microsomes. Our results suggest that the primary target of cADPR is the SR Ca(2+) uptake mechanism. Potentiation of Ca(2+) release by cADPR is mediated by increased accumulation of Ca(2+) in the SR and subsequent luminal Ca(2+)-dependent activation of RyRs.
    [Abstract] [Full Text] [Related] [New Search]