These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opposite role of Ras in tumor necrosis factor-alpha-induced cell cycle regulation: competition for Raf kinase.
    Author: Park SJ, Kim YY, Lim JY, Seo GJ, Kim J, Park SI, Park BJ.
    Journal: Biochem Biophys Res Commun; 2001 Oct 12; 287(5):1140-7. PubMed ID: 11587542.
    Abstract:
    Ras, a well-known oncogene, induces cell cycle stimulation through the Raf/Erk pathway and leads to cellular transformation, accompanied by other oncogenes such as c-myc and viral oncogenic protein. Here we suggest the interfering role of Ras in tumor necrosis factor (TNF)-alpha-induced cell cycle regulation. In TSU-Pr1 and T24 (oncogenic Ras cell lines), TNF-alpha suppresses cell cycle progression without induction of apoptosis, whereas AGS (wild-type Ras) is stimulated in its cell cycle by TNF-alpha coupled with activation of Erk. However, in TSU-Pr1 and T24, TNF-alpha leads to dephosphorylation of Erk1/2. Inhibition or activation of Ras can restore or convert TNF-alpha-induced cell cycle regulation in the cell lines containing the oncogenic Ras (TSU-Pr1 and T24) or AGS, respectively. Regulation of Erk also shows the coincidental pattern. We suggest the competition between the Ras pathway and TNF signaling for the binding to Raf, a common downstream target, as the cause of such reciprocal response, based on co-immunoprecipitation (co-IP) with antibodies against Raf and Ras or cellular Flice-inhibitory protein (c-FLIP), which have been recently identified upstream of Raf in death-ligand-induced cell cycle stimulation. Overexpression of Raf in TSU-Pr1, to reduce the competition, overcomes TNF-induced cell cycle arrest, also supporting our hypotheses.
    [Abstract] [Full Text] [Related] [New Search]