These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. Author: Mosher DF. Journal: J Biol Chem; 1975 Aug 25; 250(16):6614-21. PubMed ID: 1158872. Abstract: Cold-insoluble globulin (CI globulin) was purified from human plasma and identified on the basis of its sedimentation coefficient, electrophoretic mobility, and concentration in normal plasma. CI globulin was distinguished from antihemophilic factor (AHF) by amino acid analysis, position of elution from 4% agarose, and electrophoretic migration in polyacrylamide gels in the presence of sodium dodecyl sulfate without prior reduction. CI globulin and AHF could not be distinguished by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction and probably have very similar subunit molecular weights. CI globulin apparently consists of two polypeptide chains, each of molecular weight 2.0 x 10(5), held together by disulfide bonds. CI globulin was a substrate for activated fibrin-stabilizing factor (FSF, blood coagulation factor XIII). FSF catalyzed the incorporation of a fluorescent primary amine, N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulfonamide, into CI globulin and also catalyzed the cross-linking of CI globulin into multimers, as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction. In the presence of fibrin, cross-linking of CI globulin by FSF occurred without the formation of CI globulin multimers. Instead, polypeptides with apparent molecular weights of 2.6 x 10(5) and 3.0 x 10(5) were seen. The formation of these polypeptides coincided with the loss of the alpha chain of fibrin and CI globulin. The polypeptides were not seen when fibrin alone was cross-linked. The formation of the polypeptides was greater in fine clots than in coarse clots, and greater in clots incubated at 0 degrees than in clots incubated at 37 degrees. In clots made from purified fibrinogen, CI globulin, and FSF, the concentration of CI globulin in the clot liquor was greater if either FSF or calcium ion was omitted and cross-linking did not take place. These observations suggest that CI globulin is enzymically cross-linked to one of the chains of fibrin, most likely the alpha chain, and is thus covalently incorporated into the fibrin clot. CI globulin is very similar to a protein in the plasma membrane of fibroblasts. The cross-linking of CI globulin to itself and to fibrin may typify reactions also involving the fibroblast membrane protein.[Abstract] [Full Text] [Related] [New Search]