These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant.
    Author: McCarthy DL, Capitani G, Feng L, Gruetter MG, Kirsch JF.
    Journal: Biochemistry; 2001 Oct 16; 40(41):12276-84. PubMed ID: 11591146.
    Abstract:
    Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.
    [Abstract] [Full Text] [Related] [New Search]