These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Short-term high-fat diet alters substrate utilization during exercise but not glucose tolerance in highly trained athletes. Author: Staudacher HM, Carey AL, Cummings NK, Hawley JA, Burke LM. Journal: Int J Sport Nutr Exerc Metab; 2001 Sep; 11(3):273-86. PubMed ID: 11591879. Abstract: We determined the effect of a high-fat diet and carbohydrate (CHO) restoration on substrate oxidation and glucose tolerance in 7 competitive ultra-endurance athletes (peak oxygen uptake [VO(2peak)] 68 +/- 1 ml x kg(-1) x min(-1); mean +/- SEM). For 6 days, subjects consumed a random order of a high-fat (69% fat; FAT-adapt) or a high-CHO (70% CHO; HCHO) diet, each followed by 1 day of a high-CHO diet. Treatments were separated by an 18-day wash out. Substrate oxidation was determined during submaximal cycling (20 min at 65% VO(2peak)) prior to and following the 6 day dietary interventions. Fat oxidation at baseline was not different between treatments (17.4 +/- 2.1 vs. 16.1 +/- 1.3 g x 20 min(-1) for FAT-adapt and HCHO, respectively) but increased 34% after 6 days of FAT-adapt (to 23.3 +/- 0.9 g x 20 min(-1), p < .05) and decreased 30% after HCHO (to 11.3 +/- 1.4 g x 20 min(-1), p < .05). Glucose tolerance, determined by the area under the plasma [glucose] versus time curve during an oral glucose tolerance (OGTT) test, was similar at baseline (545 +/- 21 vs. 520 +/- 28 mmol x L(-1) x 90 min(-1)), after 5-d of dietary intervention (563 +/- 26 vs. 520 +/-18 mmol x L(-1) x 90 min(-1)) and after 1 d of high-CHO (491 +/- 28 vs. 489 +/- 22 mmol x L(-1) x 90 min(-1) for FAT- adapt and HCHO, respectively). An index of whole-body insulin sensitivity ( S(I), 10000/divided by fasting [glucose] x fasting [insulin] x mean [glucose] during OGTT x mean [insulin] during OGTT) was similar at baseline (15 +/- 2 vs. 17 +/- 5 arbitrary units), after 5-d of dietary intervention (15 +/- 2 vs. 15 +/- 2) and after 24 h of CHO loading (17 +/- 3 vs. 18 +/- 2 for FAT- adapt and HCHO, respectively). We conclude that despite marked changes in the pattern of substrate oxidation during submaximal exercise, short-term adaptation to a high-fat diet does not alter whole-body glucose tolerance or an index of insulin sensitivity in highly-trained individuals.[Abstract] [Full Text] [Related] [New Search]