These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Agonist of dihydropyridine receptors, BayK8644 depresses excitation-contraction coupling in myocytes of guinea pig heart.
    Author: Mackiewicz U, Emanuel K, Lewartowski B.
    Journal: J Physiol Pharmacol; 2001 Sep; 52(3):459-69. PubMed ID: 11596863.
    Abstract:
    BayK8644(-)(BayK), an agonist of L-type Ca2+ channels has been recently shown to impair excitation-contraction coupling in cardiac myocytes by increasing Ca2+ leak from the sarcoplasmic reticulum (SR) and by decreasing the gain factor of calcium induced release of calcium. It has been proposed that BayK affects the properties of ryanodine receptors (RyRs) of SR by binding to the sarcolemmal dihydropyridine receptors (DHPRs). This would suggest that the linkage between these receptors is more direct than currently sought. However, it has been recently found that BayK may also directly affect the RyRs increasing their open probability. In this paper we tested the effect of BayK on excitation-contraction coupling in single ventricular myocytes of guinea-pig heart superfused with 5 mM Ni2+ which blocks the L-type Ca2+ current and Na+/Ca2+ exchange. We have previously shown that it is possible to activate in these cells nearly normal Ca2+ transients and contractions despite total inhibition of ICa. This eliminated the effect of ICa increased by BayK on excitation contraction coupling thus simplifying the studied system. 0.5 microM BayK increased the diastolic [Ca2+]i and decreased the diastolic length in stimulated or rested cells superfused with Ni2+, decreased by approximately 50% amplitude of Ca2+ transients and contractions and decreased by approximately 70% the responses of cells to rapid superfusion of 15mM caffeine used as an indirect index of the SR Ca2+ content. The effects on diastolic length and [Ca2+]i in rested cells were not affected by 20 microM nifedipine. We conclude that under our experimental conditions the dominating mechanism of suppression of excitation-contraction coupling by BayK was depletion of the SR Ca2+ by the direct effect on the RyRs.
    [Abstract] [Full Text] [Related] [New Search]