These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of fat in dairy products using pressurized solvent extraction.
    Author: Richardson RK.
    Journal: J AOAC Int; 2001; 84(5):1522-33. PubMed ID: 11601472.
    Abstract:
    Gravimetric fat data were obtained for a wide range of dairy products with fat contents ranging from 0.5 to 83% using pressurized solvent extraction at elevated temperatures and pressure (80-120 degrees C; 10.3 MPa). Extraction performance was sensitive to solvent composition, temperature, and sample matrix. By optimizing solvent mixtures, sample-solvent contact times of 8-10 min were sufficient for high recoveries from all products tested. The most successful solvents with regard to speed of extraction, selectivity, and recovery (average recovery, %) were various mixtures of hexane (or petroleum ether)-dichloromethane-methanol for dried cream (99.8%), dried whole milk (99.6%), dried buttermilk (98.2%), dried skim milk (97.0%), dried whey protein concentrate (97.5%), casein (95.0%), and caseinate (102.1%); petroleum ether-acetone-ethanol or petroleum ether-acetone-isopropanol for cheddar-type cheese (99.4%); petroleum ether-acetone for butter (99.9%); petroleum ether-acetone-isopropanol for cream (100.3%); and petroleum ether-isopropanol for liquid milks (99.0%). Relative standard deviations for repeatability were obtained for dried whole milk (0.2%), dried whey protein concentrate (0.7%), cheese (0.3%), butter (0.1%), and ultraheat treated (UHT) milk (0.7%). Solvent removal and drying of extracts with a heated block evaporator saved time compared with conventional drying ovens. Estimated savings in labor (50-75%) and solvents (80%) were substantial compared with the manual Mojonnier methods.
    [Abstract] [Full Text] [Related] [New Search]