These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity.
    Author: Paddon-Jones D, Leveritt M, Lonergan A, Abernethy P.
    Journal: Eur J Appl Physiol; 2001 Sep; 85(5):466-71. PubMed ID: 11606016.
    Abstract:
    We compared changes in muscle fibre composition and muscle strength indices following a 10 week isokinetic resistance training programme consisting of fast (3.14 rad x s(-1)) or slow (0.52 rad x s(-1)) velocity eccentric muscle contractions. A group of 20 non-resistance trained subjects were assigned to a FAST (n = 7), SLOW (n = 6) or non-training CONTROL (n = 7) group. A unilateral training protocol targeted the elbow flexor muscle group and consisted of 24 maximal eccentric isokinetic contractions (four sets of six repetitions) performed three times a week for 10 weeks. Muscle biopsy samples were obtained from the belly of the biceps brachii. Isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad x s(-1) were examined at 0, 5 and 10 weeks. After 10 weeks, the FAST group demonstrated significant [mean (SEM)] increases in eccentric [29.6 (6.4)%] and concentric torque [27.4 (7.3)%] at 3.14 rad x s(-1), isometric torque [21.3 (4.3)%] and eccentric torque [25.2 (7.2)%] at 0.52 rad x s(-1). The percentage of type I fibres in the FAST group decreased from [53.8 (6.6)% to 39.1 (4.4)%] while type IIb fibre percentage increased from [5.8 (1.9)% to 12.9 (3.3)%; P < 0.05]. In contrast, the SLOW group did not experience significant changes in muscle fibre type or muscle torque. We conclude that neuromuscular adaptations to eccentric training stimuli may be influenced by differences in the ability to cope with chronic exposure to relatively fast and slow eccentric contraction velocities. Possible mechanisms include greater cumulative damage to contractile tissues or stress induced by slow eccentric muscle contractions.
    [Abstract] [Full Text] [Related] [New Search]