These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel Pentacyano Complexes of Tri- and Tetravalent Platinum. Author: Maliarik M, Glaser J, Tóth I. Journal: Inorg Chem; 1998 Oct 19; 37(21):5452-5459. PubMed ID: 11670687. Abstract: New pentacyano complexes of tri- and tetravalent platinum were obtained in aqueous solution and characterized by multinuclear NMR ((195)Pt, (13)C) supported by Raman spectroscopy. The complexes form as products of redox decomposition of metal-metal bonded platinum-thallium compounds. The trimetallic [(NC)(5)Pt-Tl-Pt(CN)(5)](3)(-) yields a new dimeric compound of Pt(III), [(NC)(5)Pt-Pt(CN)(5)](4)(-). The latter is a rare representative of unbridged dimeric complexes of trivalent platinum; it was obtained through an oxidation of monomeric square-planar platinum(II) species by a metal complex. From the bimetallic compounds [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 0-2) tetravalent platinum complexes are formed. Depending on the Pt-Tl species, electron transfer is initiated either by heat or by exposition to light; it results in [Pt(CN)(6)](2)(-) or in the hitherto unknown complexes [Pt(CN)(5)(OH)](2)(-) and [Pt(CN)(5)(H(2)O)](-), with the (195)Pt NMR chemical shift values 1638.7 (+/-0.6) and 1766.7 (+/-0.6), respectively. Proton dissociation constant of [Pt(CN)(5)(H(2)O)](-) has been determined, pK(a) = 2.51 (+/-0.01). In both Pt(III) and Pt(IV) pentacyano complexes platinum is hexacoordinated forming a pseudo-octahedron with two types of cyano ligands: four equivalent equatorial cyanides and one apical. Related platinum(IV) species, [Pt(CN)(5)X](2)(-) (X = Cl, Br, I), have also been studied. In all the pentacyano complexes a pronounced trans influence is reflected in a substantial difference between the (195)Pt-(13)C spin-spin coupling constant for the apical (trans) and the equatorial (cis) carbon sites. In this respect, the studied X ligands can be ordered in a series of decreasing (195)Pt-(13)C(trans) coupling constant: H(2)O > Cl(-) > Br(-) > I(-) > OH(-) > CN(-).[Abstract] [Full Text] [Related] [New Search]