These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Author: Mehdi K, Thierie J, Penninckx MJ. Journal: Biochem J; 2001 Nov 01; 359(Pt 3):631-7. PubMed ID: 11672438. Abstract: In the yeast Saccharomyces cerevisiae, the enzyme gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2) is a glycoprotein that is bound to the vacuolar membrane. The kinetic parameters of GSH transport into isolated vacuoles were measured using intact vacuoles isolated from the wild-type yeast strain Sigma 1278b, under conditions of gamma-GT synthesis (nitrogen starvation) and repression (growth in the presence of ammonium ions). Vacuoles devoid of gamma-GT displayed a K(m) (app) of 18+/-2 mM and a V(max) (app) of 48.5+/-5 nmol of GSH/min per mg of protein. Vacuoles containing gamma-GT displayed practically the same K(m), but a higher V(max) (app) (150+/-12 nmol of GSH/min per mg of protein). Vacuoles prepared from a disruptant lacking gamma-GT showed no increase in V(max) (app) with nitrogen starvation. From a comparison of the transport data obtained for vacuoles isolated from various reference and mutant strains, it appears that the yeast cadmium factor 1 (YCF1) transport system accounts for approx. 70% of the GSH transport capacity of the vacuoles, the remaining 30% being due to a vacuolar (H(+)) ATPase-coupled system. The V(max) (app)-increasing effect of gamma-GT concerns only the YCF1 system. gamma-GT in the vacuolar membrane activates the Ycf1p transporter, either directly or indirectly. Moreover, GSH accumulating in the vacuolar space may exert a feedback effect on its own entry. Excretion of glutamate from radiolabelled GSH in isolated vacuoles containing gamma-GT was also measured. It is proposed that gamma-GT and a L-Cys-Gly dipeptidase catalyse the complete hydrolysis of GSH stored in the central vacuole of the yeast cell, prior to release of its constitutive amino acids L-glutamate, L-cysteine and glycine into the cytoplasm. Yeast appears to be a useful model for studying gamma-GT physiology and GSH metabolism.[Abstract] [Full Text] [Related] [New Search]