These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices.
    Author: Reed M, Fujiwara H, Thompson DC.
    Journal: Chem Biol Interact; 2001 Nov 28; 138(2):155-70. PubMed ID: 11672698.
    Abstract:
    The metabolism, covalent binding and hepatotoxicity of butylated hydroxytoluene (BHT, 4-methyl-2,6-di-t-butylphenol) and two congeners (E-BHT, 4-ethyl-2,6-di-t-butylphenol; I-BHT, 4-isopropyl-2,6-di-t-butylphenol) were compared using precision-cut liver slices prepared from phenobarbital (PB)-treated male Sprague-Dawley rats. At equimolar concentrations (1 mM) BHT was the most toxic of the three compounds, causing an 80% decrease in cell viability over a 6 h incubation period. E-BHT was intermediate in toxicity while the isopropyl derivative was relatively nontoxic. Intracellular glutathione levels decreased prior to the onset of cytotoxicity. The cytochrome P450 inhibitor metyrapone completely inhibited the toxicity of all three compounds. The rates of metabolism of the three compounds to glutathione conjugates were compared in both PB-treated microsomes and PB-induced liver slices. In both models, the rate of formation was greatest for BHT, followed by E-BHT and I-BHT. Synthetic quinone methides (QMs) were prepared from each parent phenol and the rates of reactivity with three nucleophiles (water, methanol and glutathione) were compared. With each nucleophile, BHTQM was the most reactive, while I-BHTQM was the least reactive. Finally, covalent binding to protein was assessed in two ways. First, alkylation of an isolated model protein (bovine insulin) was measured in a microsomal enzyme activation system by mass spectrometry. Incubations with BHT produced the greatest extent of protein alkylation, followed by E-BHT, while no alkylation was observed with I-BHT. In the second system, covalent binding to cellular protein was assessed in rat liver PB microsomes and tissue slices by Western blotting using an antibody specific for the tert-butylphenol portion of the compounds. Binding was greatest for BHT, intermediate for E-BHT and could not be detected for I-BHT. The alkylation pattern for E-BHT was strikingly similar to that of BHT, suggesting that both compounds bound similar proteins. In summary, our results suggest that for hindered phenols such as BHT, increasing the length of the 4-alkyl substituent retards the rate of formation of reactive intermediates, significantly reduces the electrophilicity of the reactive intermediate, and greatly reduces the amount but not the selectivity of covalent binding to cellular protein, thereby reducing the toxicity of the parent compound.
    [Abstract] [Full Text] [Related] [New Search]