These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular alkalinization augments alpha(1)-adrenoceptor-mediated vasoconstriction by promotion of Ca(2+) entry through the non-L-type Ca(2+) channels. Author: Wakabayashi I, Masui H, Groschner K. Journal: Eur J Pharmacol; 2001 Oct 05; 428(2):251-9. PubMed ID: 11675043. Abstract: Modulation by intracellular pH of the vasoconstriction induced by alpha-adrenoceptor agonists was investigated in isolated guinea pig aorta. NH(4)Cl (15 mM) increased intracellular pH of aortic smooth muscle cells by about 0.2 pH unit and significantly augmented KCl-induced contraction of aortic strips, whereas simultaneous administration of NH(4)Cl (15 mM) plus Na(+) propionate (30 mM) failed to affect intracellular pH or contractility. NH(4)Cl (15 mM) potentiated contractions induced by alpha-adrenoceptor agonists, norepinephrine, phenylephrine and clonidine. Contraction induced by alpha(1)-selective adrenoceptor agonist, phenylephrine, but not that induced by norepinephrine or clonidine, was insensitive to inhibition by verapamil (1 microM). Phenylephrine-induced contraction was not affected by NH(4)Cl in Ca(2+)-free medium whereas extracellular Ca(2+)-induced contraction of phenylephrine-stimulated aorta was significantly augmented by NH(4)Cl. Consistently, 45Ca(2+)uptake into phenylephrine 1 microM)-stimulated aortic strips was increased by incubation with NH(4)Cl. The potentiating effects of NH(4)Cl on both phenylephrine-induced Ca(2+) entry and contraction were antagonized by Na(+) propionate. These results suggest that intracellular alkalinization facilitates alpha(1)-adrenoceptor-mediated vasoconstriction by facilitation of an agonist-induced Ca(2+) entry pathway that is independent of L-type Ca(2+) channels.[Abstract] [Full Text] [Related] [New Search]