These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro.
    Author: Hall H, Baechi T, Hubbell JA.
    Journal: Microvasc Res; 2001 Nov; 62(3):315-26. PubMed ID: 11678634.
    Abstract:
    The molecular properties of fibrin-based matrices, such as fibrillar structure and covalent modifications with adhesion domains, influence the angiogenic behavior of human umbilical vein endothelial cells (HUVECs) in vitro. The fibrillar structure of fibrin-based matrices was influenced by pH but not by covalent incorporation of exogenous adhesion domains. Native fibrin-based matrices polymerized at pH 10 formed organized and longitudinally oriented fibrin fibrils, which provided a good angiogenic substrate for endothelial cells. Furthermore, upon covalent incorporation of the model ligand L1Ig6, which binds to the integrin most prominently expressed on the surface of angiogenic endothelial cells, alpha(v)beta3, these matrices became angiogenesis-promoting when polymerized at physiological pH. The amount of incorporation of L1Ig6 into the matrices depended on the fibrinogen concentration on all three fibrin chains. Soluble forms of L1Ig6 diffused rapidly out of the matrix. Most important, L1Ig6-modified matrices were very specific in inducing the angiogenic phenotype of HUVECs, whereas control cells did not differentiate on these matrices. Our results indicate that artificial extracellular matrices can influence cell behavior in two ways. One way is based on the three-dimensional fibril structure of the matrix molecules themselves, and the other is due to providing specific binding sites for direct cell-matrix interactions that lead to the activation of second-messenger cascades and thus promoting angiogenic differentiation.
    [Abstract] [Full Text] [Related] [New Search]