These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inflammation-induced subcellular redistribution of VE-cadherin, actin, and gamma-catenin in cultured human lung microvessel endothelial cells. Author: Lim MJ, Chiang ET, Hechtman HB, Shepro D. Journal: Microvasc Res; 2001 Nov; 62(3):366-82. PubMed ID: 11678639. Abstract: The inflammation-induced subcellular redistribution of key cytoskeletal and junctional proteins in cultured human lung microvessel endothelial cells is investigated as part of a study on the posttranslational regulation of paracellular permeability. Inflammatory agonist-stimulated cells are detergent fractionated into three subcellular compartments followed by quantitative immunoblot analysis. Actin, gamma-catenin, and VE-cadherin increasingly associate with the cytoskeletal fraction upon thrombin stimulation. Concomitantly, actin is reduced in the cytosol fraction, whereas gamma-catenin and VE-cadherin are reduced in the membrane fraction. alpha- and beta-catenin show baseline distributions similar to those of VE-cadherin and gamma-catenin, but do not significantly redistribute. Additionally, vimentin is found exclusively in the cytoskeletal fraction and also does not significantly redistribute following thrombin treatment. The VE-cadherin response is independent of the presence of F-actin or actin redistribution. Immunofluorescence microscopy reveals that membrane and cytoskeletal VE-cadherin is present in alternating patches along the cell junctions. Furthermore, VE-cadherin is lost from zones of interendothelial cell pore formation. A model is formulated describing these membrane-associated VE-cadherin patches as predetermined zones of potential intercellular gap formation. During inflammation, VE-cadherin is lost from these zones and sequestered at the remaining cell-cell contact sites, anchored to the cytoskeleton in an actin-independent fashion.[Abstract] [Full Text] [Related] [New Search]