These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reflection spectroscopy of analgesized skin. Author: Häggblad E, Larsson M, Arildsson M, Strömberg T, Salerud EG. Journal: Microvasc Res; 2001 Nov; 62(3):392-400. PubMed ID: 11678641. Abstract: Analgesized skin, when subjected to heat stimuli, responds by increasing skin perfusion. This response does not originate from increased perfusion in superficial capillaries, but rather in the deeper lying vessels. The aim of this study was to assess changes in blood chromophore content, measured by reflection spectroscopy, in relation to the perfusion increase, especially regarding the chromophores oxyhemoglobin and deoxyhemoglobin. Eleven normal subjects were treated with analgesic cream (EMLA) and placebo for 20, 40, 60, 120, and 180 min. Individual reactions to local heating were classified as responses if the change in reflection data or the change in perfusion, as measured by laser Doppler blood flowmetry, exceeded 2 standard deviations of normal variation. The increase in blood perfusion or in blood content gave rise to an increased absorption, interpreted as an increase due mainly to the chromophore oxyhemoglobin. The number of responses increased with increased treatment time for EMLA-treated areas. In general, there was a good agreement between both methods; 44 of 55 classifications coincided for the two methods used. In conclusion, analgesized forearm skin, which had been exposed to local heating, responded with an elevated perfusion consisting of oxygenated blood. This strengthens the hypothesis that the flow increase occurs through dilatation of larger deeper lying skin vessels and not in the capillaries.[Abstract] [Full Text] [Related] [New Search]