These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(bpy)3(2+). Author: Zhou L, Rusling JF. Journal: Anal Chem; 2001 Oct 15; 73(20):4780-6. PubMed ID: 11681451. Abstract: A sensor constructed by alternate layer-by-layer adsorption of PDDA cations and double-stranded (ds)-DNA on oxidized pyrolytic graphite electrodes was evaluated for detection of chemical damage to ds-DNA from known damage agent styrene oxide. Films made with PDDA ions of structure (PDDA/DNA)2 were approximately 6 nm thick and contained 0.23 microg of ds-DNA. Catalytic oxidation using 50 microM Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and square wave voltammetry (SWV) provided more sensitive detection of DNA damage than direct SWV oxidation. The catalytic peaks increased linearly with time during incubations with styrene oxide, but only minor changes were detected during incubation with nonreactive toluene. For best sensitivity, the outer layer of the film must be ds-DNA, and analysis should be done at low salt concentration. Studies of DNA and polynucleotides in solutions and films suggested that oxidation of guanine and chemically damaged adenine in partly unraveled, damaged DNA were the most likely contributors to the catalytic peak.[Abstract] [Full Text] [Related] [New Search]