These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Helicobacter pylori growth and urease detection in the chemically defined medium Ham's F-12 nutrient mixture.
    Author: Testerman TL, McGee DJ, Mobley HL.
    Journal: J Clin Microbiol; 2001 Nov; 39(11):3842-50. PubMed ID: 11682496.
    Abstract:
    Obstacles continue to hinder in vitro studies of the gastric human pathogen Helicobacter pylori, including difficulty culturing the organism in the absence of serum or blood, rapid loss of viability following exponential growth due to autolysis, and the necessity for using high starting inocula. We demonstrate that H. pylori grows in the chemically defined broth medium Ham's F-12 nutrient mixture (F-12) in the absence of fetal bovine serum (FBS); this represents a breakthrough for studies in which serum components or proteins interfere with interpretation of results. Cultures can be continually passaged in fresh, FBS-free F-12 medium at an initial inoculum of only approximately 10(3) CFU/ml. All H. pylori strains (n = 21), including fresh clinical isolates, grew in serum-free F-12. H. pylori grew poorly in the related medium, F-10, unless additional zinc was supplied. Enhanced growth of H. pylori in F-12 broth was obtained by addition of bovine serum albumin (BSA) (1 mg/ml), beta-cyclodextrin (200 microg/ml), or cholesterol (50 microg/ml). H. pylori also grew in several simplified versions of F-12 broth lacking glucose and most vitamins but containing hypoxanthine, pyruvate, and all 20 amino acids. On F-12 medium solidified with agar, H. pylori only grew when BSA (98% pure; 1 mg/ml), cholesterol (50 microg/ml), beta-cyclodextrin (200 microg/ml), or FBS (2 to 4%) was added; addition of urea and phenol allowed colorimetric detection of urease activity. Thus, F-12 agar plus cholesterol or beta-cyclodextrin represents the first transparent chemically defined agar and the first urease indicator agar for H. pylori. Several lines of evidence suggested that BSA itself is not responsible for H. pylori growth enhancement in F-12 containing BSA or FBS. Taken together, these innovations represent significant advances in the cultivation and recovery of H. pylori using chemically defined media. Use of F-12 or its derivatives may lead to improved understanding of H. pylori metabolism, virulence factors, and transmission, and result in improved recovery and identification of H. pylori from clinical specimens.
    [Abstract] [Full Text] [Related] [New Search]