These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The WASp-like protein scar regulates macropinocytosis, phagocytosis and endosomal membrane flow in Dictyostelium. Author: Seastone DJ, Harris E, Temesvari LA, Bear JE, Saxe CL, Cardelli J. Journal: J Cell Sci; 2001 Jul; 114(Pt 14):2673-83. PubMed ID: 11683394. Abstract: Scar, a member of the WASp protein family, was discovered in Dictyostelium discoideum during a genetic screen for second-site mutations that suppressed a developmental defect. Disruption of the scar gene reduced the levels of cellular F-actin by 50%. To investigate the role of Scar in endocytosis, phagocytosis and endocytic membrane trafficking, processes that depend on actin polymerization, we have analyzed a Dictyostelium cell line that is genetically null for Scar. Rates of fluid phase macropinocytosis and phagocytosis are significantly reduced in the scar- cell-line. In addition, exocytosis of fluid phase is delayed in these cells and movement of fluid phase from lysosomes to post-lysosomes is also delayed. Inhibition of actin polymerization with cytochalasin A resulted in similar phenotypes, suggesting that Scar-mediated polymerization of the actin cytoskeleton was important in the regulation of these processes. Supporting this conclusion, fluorescence microscopy revealed that some endo-lysosomes were ringed with F-actin in control cells but no F-actin was detected associated with endo-lysosomes in Scar null cells. Disruption of the two genes encoding the actin monomer sequestering protein profilin in wild-type cells causes defects in the rate of pinocytosis and fluid phase efflux. Consistent with a predicted physical interaction between Scar and profilin, disrupting the scar gene in the profilin null background results in greater decreases in the rate of fluid phase internalization and fluid phase release compared to either mutant alone. Taken together, these data support a model in which Scar and profilin functionally interact to regulate internalization of fluid and particles and later steps in the endosomal pathway, probably through regulation of actin cytoskeleton polymerization.[Abstract] [Full Text] [Related] [New Search]